Global analysis of cell cycle gene expression of the legume symbiont Sinorhizobium meliloti.

نویسندگان

  • Nicole J De Nisco
  • Ryan P Abo
  • C Max Wu
  • Jon Penterman
  • Graham C Walker
چکیده

In α-proteobacteria, strict regulation of cell cycle progression is necessary for the specific cellular differentiation required for adaptation to diverse environmental niches. The symbiotic lifestyle of Sinorhizobium meliloti requires a drastic cellular differentiation that includes genome amplification. To achieve polyploidy, the S. meliloti cell cycle program must be altered to uncouple DNA replication from cell division. In the α-proteobacterium Caulobacter crescentus, cell cycle-regulated transcription plays an important role in the control of cell cycle progression but this has not been demonstrated in other α-proteobacteria. Here we describe a robust method for synchronizing cell growth that enabled global analysis of S. meliloti cell cycle-regulated gene expression. This analysis identified 462 genes with cell cycle-regulated transcripts, including several key cell cycle regulators, and genes involved in motility, attachment, and cell division. Only 28% of the 462 S. meliloti cell cycle-regulated genes were also transcriptionally cell cycle-regulated in C. crescentus. Furthermore, CtrA- and DnaA-binding motif analysis revealed little overlap between the cell cycle-dependent regulons of CtrA and DnaA in S. meliloti and C. crescentus. The predicted S. meliloti cell cycle regulon of CtrA, but not that of DnaA, was strongly conserved in more closely related α-proteobacteria with similar ecological niches as S. meliloti, suggesting that the CtrA cell cycle regulatory network may control functions of central importance to the specific lifestyles of α-proteobacteria.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional nodFE genes are present in Sinorhizobium sp. strain MUS10, a symbiont of the tropical legume Sesbania rostrata.

We have cloned the nodFE operon from Sinorhizobium sp. strain MUS10. MUS10 NodF shows sequence homology to acyl carrier protein and enables an S. meliloti nodF mutant to effectively nodulate alfalfa. Our results demonstrate the occurrence of nodFE in a symbiont that nodulates a legume host not belonging to the galegoid group.

متن کامل

Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti.

We report a novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. Although a majority of ars operons consist of three genes, arsR (transcriptional regulator), arsB [As(OH)3/H+ antiporter], and arsC (arsenate reductase), the S. meliloti ars operon includes an aquaglyceroporin (aqpS) in place of arsB. The presence of AqpS in an arsenic resistance operon is intere...

متن کامل

Cell Cycle Control by the Master Regulator CtrA in Sinorhizobium meliloti

In all domains of life, proper regulation of the cell cycle is critical to coordinate genome replication, segregation and cell division. In some groups of bacteria, e.g. Alphaproteobacteria, tight regulation of the cell cycle is also necessary for the morphological and functional differentiation of cells. Sinorhizobium meliloti is an alphaproteobacterium that forms an economically and ecologica...

متن کامل

Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti

The genome of about 10% of bacterial species is divided among two or more large chromosome-sized replicons. The contribution of each replicon to the microbial life cycle (for example, environmental adaptations and/or niche switching) remains unclear. Here we report a genome-scale metabolic model of the legume symbiont Sinorhizobium meliloti that is integrated with carbon utilization data for 1,...

متن کامل

The intertwined metabolism of Medicago truncatula and its nitrogen fixing symbiont Sinorhizobium meliloti elucidated by genome-scale metabolic models

1 Genome-scale metabolic network models can be used for various analyses including the prediction of 2 metabolic responses to changes in the environment. Legumes are well known for their rhizobial symbiosis 3 that introduces nitrogen into the global nutrient cycle. Here, we describe a fully compartmentalised, mass 4 and charge-balanced, genome-scale model of the clover Medicago truncatula, whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 9  شماره 

صفحات  -

تاریخ انتشار 2014